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Abstract: The use of history of mathematies in the teaching and learning of mathematics 
requires didactical reflection. A crucial area to explore and analyse is the relation between 
how students achieve understanding in mathematics and the historical construction of 
mathematical thinking. 

5.1 Introduction

Luis Radford 

The history of mathematics may be a useful resource for understanding the 
processes of formation of mathematical thinking, and for exploring the way in which 
such understanding can be used in the design of classroom activities. 

It is in this spirit that in the last decades some mathematics educators have had 
recourse to the history of mathematics. However, such a task demands that 
mathematics educators be equipped with a clear and rich theoretical framework 
accounting for the general formation of mathematical knowledge. In addition to 
offering a clear epistemological stance, the theoretical framework has to ensure a 
fruitful articulation of the historical and psychological domains as well as to support 
a coherent and fecund methodology (see figure 5.1). 
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Figure 5.1: Theoretical framework allowing an articulation between the account of 
students ’ learning of mathematics and the account of the historical development of 
mathematics, and supporting a methodology for the design of historically based 
classroom activities. 

The lack of such a suitable framework often leads to oversimplifying views about 
the way in which mathematical concepts have developed historically (see ‘historical 
domain’ in figure 5.1). Indeed, even though new historiographic paradigms have 
emerged in the past few years (see Gillies 1992, Høyrup 1995, Lizcano 1993, among 
others), the history of mathematics is all too often read in an unhistorical way. That 
is, narratives are presented which implicitly assume that past mathematicians were 
essentially dealing with our modern concepts, but just did not have our modern 
notations at their disposal. Reading history like this, in what might be called a 
teleological way, the historian seems to assume, in effect, that there was a course 
that the historical developments just had to take. In making this assumption, a 
normative dimension is introduced into the account, through which the historian 
endows other cultures and mathematicians of other epochs with rationalities and 
conceptualisations that were completely alien to them. 

Besides this problem of conveniently framing the historical conceptual 
development of mathematics, the link between historical developments in 
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mathematical thinking and the students’ learning of mathematics (see horizontal 
arrow in Figure 5.1) has often been done in terms of a naïve psychological version 
of biological recapitulationism. Briefly stated, biological recapitulationism, an idea 
introduced at the end of the last century, following Darwin’s writings on the 
evolution of species, posits that the development of the individual (ontogenesis)
recapitulates the development of mankind (phylogenesis). The German biologist 
Ernst Haeckel seems to have been the first to transfer this ‘biological’ law to the 
psychological domain. He said that “the psychic development of the child is but a 
brief repetition of the phylogenetic evolution” (quoted by Mengal 1993, 94). 

The concept of genetic development was partly elaborated in the 1970s, in the 
work of the psychologists Jean Piaget and Rolando Garcia, as a reaction to this 
simplistic psychological version of recapitulationism. In their book Psychogenesis
and the history of science (1989—a book that has had a significant influence on 
mathematics educators interested in the use of the history of mathematics-they
presented a different perspective. They argued that we should try to understand the 
problem of knowledge in terms of the intellectual instruments and mechanisms 
allowing its acquisition. According to them, the first of those mechanisms is a 
general process which accounts for the individual’s assimilation and integration of 
what is new on the basis of his or her previous knowledge. (This is a view that runs 
against the positivist view that knowledge simply accumulates in a straightforward 
way.) On the one hand, in gaining 
knowledge the individual is seen as selecting, transforming, adapting and 
incorporating the elements provided by the external world to his or her own 
cognitive structures (Piaget and Garcia 1989, 246); while, on the other hand, there 
can be no assimilation of ‘pure’ objects divorced from their context, insofar as 
objects always have a social signification (p. 247). This paradox led Piaget and 
Garcia to discuss the influence of the social environment on the evolution of 
knowledge in the individual. 

Pursuing this further led Piaget and Garcia to ask whether two different social 
environments could lead to two different psychogenetic developments. Since the 
works of Bachelard, Kuhn and Feyerabend had stressed the significant role played 
by social settings in the formation of conceptual systems and theoretical knowledge, 
Piaget and Garcia’s question was hardly inevitable. The question has become even 
more urgent nowadays in the light of recent cognitive, anthropological and 
sociological discussions about the mind. In an interview given in the mid 1970s, 
when their book was still in preparation, Piaget clearly stated that one of the 
problems that led him to write the book was to investigate if there is only one 
possible line of evolution in the development of knowledge or if there are many, and 
he replied (Bringuier 1980, 100): 

Garcia, who is quite familiar with Chinese science, thinks that they have travelled a route very 
different from our own. So I decided to see whether it is possible to imagine a psychogenesis 
different from our own, which would be that of the Chinese child during the greatest period of 
Chinese science, and I think that it is possible. 

However, in their book the problem was dealt with in terms of the difference 
between the individual’s acquisition of knowledge and the ‘epistemic paradigm’ in 

But then there is an apparent dilemma. 
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which the individual finds him or herself subsumed. By epistemic paradigm they 
meant “a conception [of science] that has become part of accepted knowledge and is 
transmitted along with it, as naturally as oral or written language is transmitted from 
one generation to the next” (Piaget and Garcia 1989, 252). This concept was 
explicitly presented as an epistemological alternative to Kuhn’s concept of paradigm 
and—in particular—its socially imposed norms. Thus, the ‘failure’ of Greek and 
Mediaeval thinkers to conceive the principle of inertia in physics, and the success of 
the Chinese in conceiving such a principle—which they apparently considered “as 
obvious as the fact that a cow is not a horse” (p. 253)—was explained in terms of the 
different epistemic paradigms in which Greek and Chinese science were couched (p. 
254). Although the individual was seen as being in dialectical interaction with the 
object of knowledge, and it was recognised that society provides objects with 
specific meanings, Piaget and Garcia traced a clear frontier dividing the social and 
the individual. For them, a distinction must be made between mechanisms to 
acquire knowledge and the way in which objects are conceived by the subject. In a 
concise and clear phrase, they said: “Society can modify the latter, but not the 
former.” (p. 267). 

In their approach to the relations between ontogenesis and phylogenesis, Piaget 
and Garcia did not seek for a parallelism of contents between historical and 
psychogenetical developments but for the mechanisms of passage from one 
historical period to the following. They tried to show that those mechanisms are 
analogous to those of the passage from one psychogenetic stage to the next. In 
addition to the assimilation mechanism previously mentioned, they identified a 
second mechanism of passage. This was described as a process that leads from the 
intra-object, or analysis of objects, to the inter-object, or analysis of the 
transformations and relations of objects, to the trans-object, or construction of 
structures. The two mechanisms were considered as invariable and omnipresent, not 
only in time but in space too. That is, we do not have to specify what they are in a 
certain geographical space at a particular time since it is considered that they do not 
change from place to place and from time to time. 

The Russian psychologist Lev Vygotsky was also concerned with the 
relationship between ontogenesis and phylogenesis, but—starting from a distinct 
conception of the mind—took a different approach. Instead of posing the problem 
in terms of some invariable mechanisms of acquisition of knowledge, he felt that 
thinking developed as the result of two lines or processes of development: a 
biological (or natural) process and a historical (or cultural) one. One of his 
fundemental differences with Piaget and Garcia’s approach lies in the 
epistemological role of culture. For Piaget and Garcia, culture cannot modify the 
essential instruments of knowledge acquisition, for they saw these instruments as 
originating in the biological realm of the individual (Piaget and Garcia 1989, 184). 
In Vygotsky’s approach, though, culture not only provides the specific forms of 
scientific concepts and methods of scientific inquiry but overall modifies the activity 
of mental functions through the use of tools -of whatever type, be they artefacts 
used to write as clay tablets in ancient Mesopotamia, or computers in contemporary 
societies, or intellectual artefacts such as words, language, or inner speech 
(Vygotsky 1994). 
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It is this cultural 
line of development 
in Vygotsky’s account 
that renders any 
recapitulationism
impossible. For 
instance, in one of the 
many passages in 
which he dealt with 
this topic, he 
discusses the 

higher mental 
functions in history 
and in the child, and 
goes on to say that 
“we do not mean to 
say that ontogenesis 
in any form or degree 
repeats or produces 
phylogenesis or is its 
parallel.” (Vygotsky 
1997, 19). One of the
reasons is the 
variability introduced 
by the sociohistorical 
conditions, which are 
different in each 
period of the history. 
In this view, 
ontogenesis runs, so 
to speak, underpinned 
by biological 
phylogenesis and the
sociohistorical con- 
ditions where onto- 
genesis takes place 

The growing of the normal child into civilisation usually represents a single merging with the 
process of his organic maturation. Both planes of development -the natural and the 
cultural-coincide and merge. Both orders of changes mutually penetrate each other and form 
in essence a single order of social-biological formation of child personality. 

The examples of Piaget and Garcia, and of Vygotsky, uncover the complexity of the 
problem of the relationship between phylogenesis and ontogenesis and the 
importance of working towards a clear theoretical framework. 

development of 

Figure 5.2: Comparison of phylogenesis and ontogenesis 
have been made since the late 19th century, as seen in this 
‘Diagram of the development of mathematical experience 
in the race and in the individual‘ by Miss Barvell in the 
Mathematical Gazette of 1913. 

(pp. 19-20);
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This chapter summarises different ways in which the history of mathematics 
contributes to a better understanding of the student processes of learning 
mathematics and the design and analysis of teaching activities. In reference to the 
different domains mentioned in Figure 5.1, the sections presented in this chapter 
may be described as follows. In section 5.2, Victor Katz and his colleagues sketch 
some case studies dealing with the relations between the historical and psychological 
domains. More specifically, they give some examples from the history of 
mathematics where we see mathematicians struggling with problems that appear to 
present difficulties analogous to those faced by our students today, when they tackle 
the contemporary version of those problems in their school curriculum. They 
emphasise the importance of teachers having some knowledge of the history of 
mathematics, as it may help them to help their students overcome some important 
difficulties which arise in the mathematics classroom. 

In section 5.3, Maria Bartolini Bussi and Anna Sierpinska present some 
sophisticated methodological approaches recently developed by mathematics 
educators. In these approaches, one of the goals is to study the historical conditions 
which made possible the emergence of a certain type or domain of mathematical 
knowledge (historical domain) and to adapt and integrate those conditions into the 
design of classroom activities (methodological domain) and the analysis of students’ 
forms of mathematical thinking (psychological domain). 
In section 5.4, Luis Radford, Paolo Boero and Carlos Vasco focus on the 
epistemological assumptions (epistemological domain) which underline three 
current teaching/research approaches using the history of mathematics: Brousseau’s 
epistemological obstacles, Radford’s socio-cultural perspective and Boero’s Voices 
and Echoes Games. They make it evident that the interpretation of the conceptual 
development of mathematics (historical domain), and the investigation of the 
psychological processes underlying the learning of mathematics (psychological 
domain), as well as the linking of these phenomena with the design of classroom 
activities (methodological domain), will all depend upon the chosen framework. 
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5.2 The role of historical analysis in predicting and 
interpreting students’ difficulties in mathematics 

Victor Katz, Jean-Luc Dorier, Otto Bekken and Anna Sierpinska 

As noted in the introduction of this chapter, Piaget and Garcia (1989, 27-28) claim 
that

the advances made in the course of the history of scientific thought from one period to the 
next, do not, except in rare instances, follow each other in random fashion, but can be 
seriated, as in psychogenesis, in the form of sequential ‘stages.’ ... [and] the mechanisms 
mediating transitions from one historical period to the next are analogous to those mediating 
the transition from one psychogenetic stage to the next. 

Anna Sfard has noted (private communication) that this analogy “is particularly 
striking at those special junctures where in order to assimilate or create or learn a 
new concept, the already constructed knowledge has to undergo a complete 
reorganisation, and the whole epistemological foundation has to be reconstructed as 
well.” The claim of Piaget, which is supported by Sfard, needs of course to be 
supported by research into students’ shifts in understanding mathematical 
difficulties. This research has been done in several specific cases of student 
difficulty, where there was a historical reason to believe that such a difficulty might 
exist. We summarise the results of some of these research studies below. 

A first example of this phenomenon of students finding difficulties analogous to 
those of past mathematicians is familiar to most calculus teachers: the concept of a 
‘limit’ in analysis. Teachers are aware that it is generally difficult to explain the 
formal notion of limit at the beginning of an elementary calculus class, where it 
‘logically’ belongs. Students certainly ‘know’ that the limit of 2x+3 as x approaches
7 is 17, but resist trying to prove such an obvious result using epsilons and deltas. 
They cannot comprehend why such a proof would be necessary. 

To set this in context, historians are aware that the formal idea of a limit was not 
developed until a century and a half after the basic concepts of the calculus were 
invented by Newton and Leibniz. During that period, from about 1670 to 1820, 
many mathematicians used the concept of limit with great understanding -and
could calculate limits in many important cases-but they did not have a definition
which would enable the statement “the limit of f(x) as x approaches a is L” to be
proved with the rigor of classical Greek mathematics. Analysing the historical 
conditions and reasons why the shift from an intuitive to a formal understanding of 
limits took mathematicians so long to accomplish gives us valuable information 
which can help us both predict and interpret our students’ difficulties in 
accomplishing this shift in a few short weeks (see Cornu 1991, Sierpinska 1988, 
Bum 1993). 

John Fauvel, Jan van Maanen (eds.), History in mathematics education: the ICMI study, 
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Besides the difficulty related to the passage from an intuitive to a rigorous 
understanding and use of the concept of limit, other difficulties arise from this 
concept in the comprehension of curvilinear area, tangent line and instantaneous 
flow. An intensive historical search on the development of calculus allowed M. 
Schneider (1988) to demonstrate that these difficulties surface from the same 
epistemological obstacle: the absence of separation, in the mind of students, between 
mathematics and an illusory ‘sensible’ world of magnitudes. This investigation 
provided Schneider with a research methodology to render such learning difficulties 
apparent: for example, the reactions of students in learning about Cavalieri’s 
principles, indivisibles and related paradoxes reveal mental shifts in meaning from 
the world of magnitudes to their measures. 

Jean-Luc Dorier (1998), in his studies of how best to teach the concepts of linear 
dependence and linear independence in linear algebra, has noted that although 
students entering university often have certain conceptions of these notions in 
concrete situations, they have difficulty in understanding the connection of the 
formal definition with these earlier situations. A historical analysis of the 
development of these concepts provides help in understanding the students’ 
difficulties.

The twin concepts of linear dependence and independence emerged historically 
in the context of linear equations and, in particular, in Euler’s analysis of Cramer’s 
paradox dealing with the number of intersection points of two algebraic curves. 
Euler found that the paradox was based on the ‘fact’ that n linear equations 
determine exactly n unknown values, but realised that this latter statement is not 
always true. He discussed several examples in which systems of n equations in n
unknowns do not have a single n-fold solution and realised that in certain cases the
actual constraints imposed on the unknowns by the equations are fewer than n. That
is, Euler stated that certain of the equations are “contained” in the others; this is his 
notion of what we can call inclusive dependence. After Euler’s work, many 
mathematicians considered this problem of dependence and tried to determine 
conditions on the determinant of a dependent system which would show the nature 
of the set of solutions. But it was not until 1875 that Georg Frobenius pointed out 
the similarity of dependence of a set of equations to dependence of a set of n-tuples.
He could then give a formal definition of the concept of ‘linear dependence’ and 
show how the notion of ‘rank’ of a system enabled one to determine the dimension 
of the set of solutions. 

The teaching experiment reported by Dorier, based on a historical analysis of the 
development of the concept of rank, was designed to help the students understand 
the power of linear dependence as a formal and unifying concept. Indeed, from their 
secondary school practice of solving equations, students entering university usually 
have an Eulerian ‘inclusive dependence’ idea of equations. But at the university 
level, it is necessary for the students to move to the stage where they understand the 
formal concept of dependence in a global context. That is, they need to understand 
that the equations, and not just n-tuples, must be regarded as objects in their own
right and that there needs to be a definition of linear dependence which applies to 
both of these cases, as well as in even more general contexts. Thus it was necessary 
to devise a teaching strategy to meet these needs. 
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On a more elementary level, students often have trouble making the shift from 
solving concrete problems using words and numbers to the more abstract problem of 
using letters to designate unknown quantities. Again, we know that, historically, it 
was a difficult conceptual switch. In order to help students understand the role of 

letters as representing 
unknowns, Radford and 
Grenier (1 996a, 1996b) 
designed a teaching 
sequence in which 
students were asked to 
solve some word 
problems using 
manipulatives. These 
manipulatives were 
conceived in such a way 
that the unknown quantity 
was modelled by a hidden 
number of candies in a 
bag or a hidden number of 
hockey cards in an 

Figure 5.3: Not only ‘hidden quantities’ are hard to envelope, and so On. The 
understand. The Hindu-Arabic numerals themselves were teaching sequence was 
difficult for early European users, as this medieval Italian structured to allow the 
manuscript testifies. The scribe has rendered as “xxx xxx 1 students to master two 
302 303 . . . ” what we would write as “30 31 32 33”. important rules of Islamic 
Such a text helps today‘s teachers to appreciate how algebra, those of al-
difficult it is for pupils to learn positional notation. muqabala and al-jabr. In

the second step of the 
teaching sequence, 
instead of using 

manipulatives, the students had to make drawings (e.g. of a bag containing an 
unknown number of candies) and, in the third step, the students had to use letters 
instead of drawings. The teaching sequence was inspired by a historical analysis of 
medieval Italian algebra (Radford 1995, 1997), in particular by an idea of the 
fourteenth century mathematician Antonio de Mazzinghi, who explained the concept 
of unknown as a ‘hidden’ quantity. 

Anna Sfard (1995) found furthermore that even if high school students could 
solve linear equations or systems of linear equations with numerical coefficients, it 
was still difficult for them to make the jump to solving systems with literal 
coefficients. She notes that at first she was “quite insensitive to the huge conceptual 
difference between equations with numerical coefficients and equations with 
parameters.” And it took several weeks of hard work before the students could cope 
with such equations in a reasonable manner. Sfard found that colleagues had 
encountered similar difficulties. Again, a historical analysis shows that this 
difficulty is not surprising. Even though by the late medieval period, letters and 
other abbreviations were being used in algebra to designate unknowns and their 
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powers, the rules for solving equations were always stated in terms of concrete 
examples.

Thus one could solve x
2

+ 10x = 39, but not x
2

+ bx = c. It was François Viète in
the late sixteenth century who first introduced letters to designate known values 
(parameters) and in this way brought a great conceptual change to algebra. It was 
Viète’s work that enabled formulas to be written to solve quadratic and cubic 
equations, for example, and that led, in general, to structural manipulations in 
algebra rather than purely operational ones. The historical difficulties in this shift 
from numerical to purely symbolic algebra again leads us to believe that teachers 
must be aware of the conceptual difficulties their students may have in making the 
same shift. 

Lisa Hefendehl-Hebeker (1991) analysed the always difficult task of helping 
students understand the meaning of a negative number, and the reasons for the rules 
governing operations with these numbers. Negative numbers have, of course, been 
used for two millennia in China, but mathematicians in the West have always been 
suspicious of them, even though the rules for operation on them were known by the 
sixteenth century. Even as late as the nineteenth century, there were some English 
mathematicians who tried to reformulate algebra without the use of negative 
numbers, because they believed that they were nonsensical. The question, in fact, 
became whether negative numbers were ‘quantities’ and then what it meant for a 
‘quantity’ to be less than zero. There were, of course, numerous attempts 
throughout the centuries to justify negative numbers, either by using them to model 
a particular idea (debt, for example) or by deriving the rules of operation by 
arguments based on the “principle of permanence of equivalent forms” (Peacock 
1830), in particular the distributive and associative laws. Hefendehl-Hebeker shows 
in her article how modern students’ confusions about these laws are mirrored in 
confusions of such authors as Stendhal and d’Alembert in the 18th century. A 
teacher would do well to study these ‘confusions’ to see why his or her own students 
could be confused. But Hefendehl-Hebeker also notes that Hermann Hankel in the 
mid-19th century advocated a change in point of view by looking at negatives as an 
extension of the number system rather than as quantities in their own right. That is, 
he urged that these numbers be introduced in a purely formal manner, without 
worrying about what kind of quantity they represent. Again, this history shows how 
one might try to introduce and justify negative numbers in the classroom. 

Another set of numbers which often causes difficulties for students is the 
complex numbers. At one time in school they are told that negative numbers do not 
have square roots, and later they are told that in fact they do have square roots. Why 
have the rules changed? A historical analysis here shows again that there was a long 
period of development between the first discovery of complex numbers by Cardano 
and Bombelli in their studies of solutions of cubic equations in the fifteenth century 
and the general acceptance of these numbers into mathematics in the nineteenth. As 
in the case of negatives, it took centuries for mathematicians to give up the idea that 
‘number’ must represent the measure of a quantity. The final acceptance of these 
numbers came only through their geometric interpretation, that is, on their modelling 
in a well-understood area of mathematics. Again, many textbooks today seem to 
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violate this historical analysis by simply defining the square root of -1 by fiat, 
without any motivation whatsoever. 

Non-Euclidean geometry was developed by three mathematicians early in the 
nineteenth century. Carl Friedrich Gauss, who developed it first, declined to publish 
anything on this topic, because he did not want to deal with the controversies he was 
sure would erupt. But two less famous mathematicians, Janos Bolyai in Hungary 
and Nikolai Lobachevsky in Russia, both published their studies in this field around 
1830. Nevertheless, it proved very difficult for mathematicians to give up the very 
strong conviction that geometry describes a unique reality and, as such, can not 
admit a plurality of axiom systems, It was not until several mathematicians showed 
how non-Euclidean geometry could be modelled in Euclidean geometry that the 
mathematical community began to accept the validity of non-Euclidean geometry. 
So again, we should not be surprised when there is difficulty for students to 
understand that Euclidean geometry may not in fact be the ‘best’ geometry to 
describe the space in which we live. 

A final common student difficulty involves the transition to abstraction. As a 
typical example, many instances of what today are called groups were known in the 
first eight decades of the nineteenth century-and some were known even earlier. 
Yet it was not until 1882 that the first complete formal definition of this abstract 
concept was given. Nevertheless, many current textbooks in abstract algebra begin 
by giving a formal definition of a group before the student has experienced many of 
these examples. It is not surprising that students have difficulties making the leap to 
abstraction; too little attention has been paid to the necessary steps that historically 
preceded this leap. 

As these examples demonstrate-and there are numerous others-a teacher who
is knowledgeable in the history of mathematics will anticipate student difficulties in 
areas where, historically, much work was needed to overcome significant 
difficulties. Thus the teacher can be prepared with appropriate teaching strategies 
for these situations, ones which may well be in accord with the historical 
developments and which will help the students overcome these obstacles to 
understanding. And as some of the research results in this area demonstrate, these 
strategies may well be effective. Yet the knowledge of history of mathematics is not 
sufficient to develop teaching strategies; if the analysis of historical conditions of the 
emergence of a concept is an important source of information to predict and analyse 
students’ difficulties, teachers still must take into account the reality of teaching at a 
certain level with a certain type of student. There is no automatic transfer from 
history to teaching. First, the knowledge of history must be as complete as possible, 
involving primary sources whenever feasible. Second, there must exist a 
preliminary didactical investigation about students’ difficulties. Finally, the 
confrontation of the historical and didactical situations must be made with great 
care, taking into account the conditions and constraints of the two different 
environments, the historical and the classroom. 

Such work needs competence both in history and in mathematics education 
research and shows interesting possible interactions between these two fields for the 
future.
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5.3 The relevance of historical studies in designing and 
analysing classroom activities 

Maria G. Bartolini Bussi and Anna Sierpinska 

With contributions by Paolo Boero, Jean Luc Dorier, Ernesto Rottoli, Maggy 
Schneider, and Carlos Vasco 

When a mathematics educator draws on the history of the domain in designing 
activities for the students he or she may be looking for facts: Who were the authors 
of that particular piece of mathematics? When did they live? What were their lives? 

John Fauvel, Jan van Maanen (eds.), History in mathematics education: the ICMI study, 
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By introducing historical anecdotes in his or her classes he or she may increase the 
students’ motivation to learn mathematics. But a historical study may have other 
goals as well: looking for geneses of mathematical ideas or contexts of emergence of 
mathematical thinking, in the aim of defining conditions which have to be satisfied 
in order for the students to develop these ideas and thinking in their own minds. 

5.3.1 Bringing historical texts into the classroom: the ‘voices and 
echoes’ games 

For example, Boero et al. (1 997, 1998) concerned themselves with the conditions of 
emergence of theoretical knowledge. Mathematical thinking is theoretical par 
excellence, and without developing this special attitude of mind in the students there 
is less opportunity for deepening their understanding of mathematics. A historico-
epistemological analysis was, for these authors, a basis for an analytical definition of 
theoretical knowledge which included parameters such as organisation, coherence 
and systematic character, the role played by definitions and proofs, the speech genre 
characteristic of theoretical discourse, and the ways of viewing the objects of the 
theory. This definition became subsequently a basis for a didactic theory: indeed, 
Boero et al. have designed and implemented an innovative educational methodology 
in the classroom called the ‘voices and echoes game’, which draws on the 
Vygotskian distinction between everyday and scientific concepts and the Bakhtinian 
construct of ‘voice’. 

The main hypothesis of this methodology is the introduction, into the classroom, 
of ‘voices’ from the history of mathematics (in the form of selected primary sources, 
with commentaries). This might, by means of well chosen tasks, develop into a 
‘voices and echoes game’ suitable for the mediation of some important elements of 
theoretical knowledge. The chosen examples of theoretical knowledge are 
conceptual leaps in the cultural history of mankind: the theory of falling bodies of 
Galileo and Newton, Mendel’s probabilistic model of the transmission of hereditary 
traits, mathematical proof and algebraic language. All these feature aspects of a 
counterintuitive character. The authors claim that the ‘new’ manners of viewing and 
the methodological requirements are expressed by the ‘voices’ of the protagonists 
themselves in the speech genre that belongs to their cultural tradition. Such voices 
act as voices belonging to real people with whom an imaginary dialogue can be 
conducted beyond space and time. The voices are continuously regenerated in 
response to changing situations: They are not passively listened to but actively 
appropriated through an effort of interpretation. The authors describe a number of 
teaching experiments whereby they introduce some analytical tools (i.e. different
types of echoes) which, on the one hand, are used to interpret classroom processes 
and, on the other, are used to design classroom activity. For instance, a ‘mechanical
echo’ consists in a precise paraphrasing of a verbal voice, whilst an ‘assimilation
echo’ refers to the transfer of the content/method conveyed by a voice to other 
problem situations. A ‘resonance’ is a student’s appropriation of a voice as a way of 
reconsidering and representing his or her experience. The most delicate issue in this 
methodology is, certainly, the selection of historical sources capable of conveying 
the crucial ideas of a scientific revolution in a concise manner, so as to comply with 
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the space and time constraints of 
institutionalised teaching. Boero’s 
published experiments concern mainly 
grade 8 secondary school students, but 
studies presently in progress (with voices 
taken from Plato’s dialogues) have given 
evidence that similar processes can be 
implemented also in primary schools and 
with pupils from a range of socio-cultural
backgrounds (Garuti et al 1999). We 
analyse below (§5.4) the epistemological 
assumptions of this methodology. 

This approach is consistent with the 
approach of Bartolini Bussi et al. (1996,
1999) who also introduced a guided reading 
of historical sources in primary school, in
two long-term teaching experiments 
concerning perspective drawing and gears. 
Even if no explicit voices and echoes game 
was introduced in the classroom, the guided 
reading and interpretation of well selected 
historical sources had been used to 
institutionalise the pieces of knowledge 
built in the classroom by shifting them to a 
theoretical level. In both experiments the 

appropriation of the theoretical dimension of mathematical knowledge had led the 
pupils to produce theorems, i. e. statements with proofs inside a reference theory 
(Mariotti et al. 1997). The above experiments concern early grades of school (4-8).

Other experiments have been carried out successfully in the 11 th grade (Ernesto 
Rottoli, personal communication), using original texts of Greek authors and excerpts 
from historical studies, in order to integrate the knowledge acquired during 
philosophy lessons and the knowledge acquired during mathematics lessons. The 
aim was to organise a deeper level of knowledge. The design was based on the 
awareness that in ancient times mathematics and philosophy were strictly linked to 
each other and some traces of this link are still present in highly organised and 
culturally rooted linguistic patterns. 

5.3.2

Figure 5, 4: Whether a section of a 

cone is the same as a section of a 

cylinder, and whether either is egg-

shaped, has long been debated,

Here Dürer’s discussion of the

derellipse (Underweysung

Messung, 1525)

Indirect use of historical and epistemological studies in the 
design of activities for students 

In the research projects described above, elements of the history of science 
(fragments of original texts) were used in an explicit manner in the teaching 
sequences, and historico-epistemological studies were directly linked to the contents 
of teaching. The links between the historical studies and the teaching design can be 
much more implicit and indirect, and the relevance of these studies for the didactic 
activity somewhat less obvious. 
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5.3.3

This is certainly the case of the research projects on the teaching and learning of 
linear algebra conducted, independently, by Dorier and Sierpinska. 

The motivation of these research projects has been students’ commonly stated 
difficulty with the axiomatic approach used in undergraduate linear algebra courses. 
This difficulty is often hard for mathematicians to understand, for whom the 
axiomatic approach is indeed the royal road to linear algebra, at last allowing the 
subject to be presented in a simple, neat and coherent way. The questions that 
naturally arise in this situation are: why is it difficult to understand a simple 
axiomatic theory? What are the conditions of coming to construct or understand this 
or that particular concept of this theory? What can be done to facilitate the 
understanding of this theory by the students? Some answers to these questions make 
no reference to history. For example, one may say that the axiomatic theories that 
constitute linear algebra are simple only in appearance. A slightly deeper 
mathematical analysis of the basic concepts of linear algebra shows their inner 
complexity (see, e.g. Sierpinska, Dreyfus, Hillel, 1999). This complexity may not 
be accessible to an undergraduate student, and therefore, he or she will have to 
accept the teacher’s word that, for example, it makes sense to accept this definition 
rather than a different one. This happens so often in a linear algebra course, that 
many students end up developing what is called ‘the obstacle of formalism’ (Dorier 
et al 1997). It may not have been necessary to refer to history to answer these 
questions. But it proved useful and inspiring, both in explaining students’ 
difficulties and in designing activities for them. 

For example, a look at the history of linear algebra from a very broad 
perspective of currents of thought allowed the identification of three interacting 
modes of reasoning, labelled ‘synthetic-geometric’, ‘analytic-arithmetic’, and 
‘analytic-structural’ (Sierpinska et al. 1997). These modes of reasoning are linked 
to different theoretical perspectives and imply different meanings of concepts. They 
are not equally accessible to beginning linear algebra students, and the students tend 
to be inflexible in using them in different contexts. An awareness of these modes of 
reasoning and their role in linear algebra helps in both designing activities for 
students and reacting to the students’ responses to them in a teaching situation. 

A more fact-focused look at the history of linear algebra allowed the 
identification of the contexts in which the basic linear algebra concepts emerged: 
analytic geometry, vector algebra, vector analysis and applications in physics; linear 
equations and determinants, linear differential and functional equations, abstraction 
of vector structures in functional analysis (Dorier 1995a, 1997). Specific contexts 
have been used in the design of history-inspired classroom activities. For example, 
instead of simply giving the definition of a linearly independent set of vectors and 
following it by a series of exercises, Dorier (1 998a, 1998b) proposed to anchor the 
students’ understanding in their experience of the Gaussian elimination method for 
solving systems of equations, which is introduced in secondary schools in France. 
The task for the students was to discuss and analyse this method. In this research, 
history was a source of inspiration and a means of control in the building of the 
didactic experiment, but the experiment did not aim at a reconstruction in the 
classroom of the historical development or even at commenting on historical texts. 

The example of linear algebra 
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Case study: Fermat as an inspiration for work with Cabri 

The reference to history is also implicit in recent research by Sierpinska, Hillel & 
Dreyfus (submitted), which focuses on the students’ understanding of the notion of 
vector and its coordinates in a basis. This research involved designing and 
evaluating a teaching sequence in the Cabri dynamic geometry environment. What 
emerged was the striking difference between the way in which Fermat approached 
the problem of finding a canonical equation of a conic in his Ad locos planos et 
solidos isagoge (c.1635) and the algorithmic procedure which is normally used in 
present day linear algebra courses. This triggered an understanding of the difference 
between geometric and arithmetic spaces, and a coherent explanation in these terms 
of the students’ difficulties and conceptions. A brief outline of this explanation 
follows.

Elements of an n-dimensional arithmetic space are n-tuples of real numbers. By
defining operations of addition and scalar multiplication on the n-tuples in a
coordinate-wise fashion one obtains a vector space structure usually denoted by .
There is a long-standing tradition of referring to the elements of the arithmetic 
spaces as ‘points’, and of using the language of Euclidean geometry to refer to their 
subsets such as straight lines and planes. This is what we do in linear algebra 
classes, without, however, discussing with the students the status, in the theory, of 
the geometric objects thus evoked. There are important differences between the 
‘arithmetic spaces’ underlying vector spaces and the ‘geometric spaces’ of
Euclidean geometry. The objects of the arithmetic spaces are sets of n-tuples of real
numbers defined by conditions (in the form of equations, inequalities, etc.) on the 
terms of the n-tuples belonging to the sets. These objects can be represented by
geometric figures like lines or surfaces. The representations will depend on the 
choice of a coordinate system. 

A set {(x, y ) : x2 + y2 = 1) , for example, will be represented by a geometric circle

in an orthonormal coordinate system, and by a geometric ellipse in a non-
orthonormal coordinate system. (Here geometric circle means the locus of points 
equidistant from a given point.) In geometric spaces, the roles of objects and 
representations are reversed. Objects, given by relations between their parts, can be 
represented by sets of n-tuples defined by conditions on their terms, e.g. by
equations. These equations will be different depending on the choice of the 
coordinate system. 

Fermat and Descartes worked with geometric spaces, and for them, equations 
were representations of geometric objects: they were introducing a system of 
coordinates into a pre-existing geometric space. But, in a process which started by 
the end of the 17th century with the work of Newton and other creators of calculus, 
representations started to play the role of objects: “Before Descartes, the solution of 
an algebraic equation was nothing but a tool to solve other problems. After 
Descartes and particularly at the end of the 17th century, to give an equation or a 
symbolic expression was just to give a curve, and to give an integral was just to give 
an area, even if the curve and the area are geometric objects that we can perfectly 
characterise without mentioning any equation or integral.” (Panza 1996, 245). This 
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process led to the replacement of the geometric space with, as it were, a system of 
coordinates without an underlying geometric space. 

The geometric language and drawings of lines and planes in today's linear 
algebra textbooks are used as mere didactic aids in the introduction of the 
spaces, illustrations which play no role in the building of the theory. But thinking of 
vectors as n-tuples leads, notoriously, to students' difficulties with the notions of
'change of basis' and 'coordinates of a vector in a basis', especially when these 
notions are introduced in the context of spaces (Hillel & Sierpinska 1994).
Indeed, for a student who is thinking in terms of arithmetic spaces, the notion of 
change of coordinates may not make sense. Insofar as an arithmetic space is nothing 
but a system of coordinates, changing the system means changing the space, so one 
should maybe speak of transformations of the space. The very notion of coordinates 
of a vector does not seem to make sense in the arithmetic frame of mind, where a 
vector is nothing but coordinates. In our courses we often try to give some meaning 
to the notion of change of basis by introducing the topic of canonical equations of 
conics. But in doing this, without warning the student, we revert to thinking in 
terms of geometric spaces: conics are again geometric objects which can be 
represented by different equations depending on the choice of the coordinate system. 
This only adds to the confusion in the students' minds. The notions of coordinates 
of a vector in a basis and change of basis make more sense for the students when 
they start working with vector spaces other than (especially with function 
spaces) but, at an early stage in the teaching of linear algebra, it seems useful to 
restore the geometric genesis of the spaces. This was the guiding idea of the 
teaching design and an important part of the rationale behind the choice of the 
computer environment, namely the preference of a Dynamic Geometry Software 
over a Computer Algebra System. 

A posteriori, it is clear that it was not necessary to study Fermat's Isagoge to 
come to this understanding of the students' difficulties. But it helped a lot in 
clarifying ideas and making distinctions between blurred concepts. The simple 
reason for this can be that understanding ideas gains much from analyzing 
contrasting ways of thinking, from having access to their articulated exposition, and 
from following their evolution over long periods of time. All this is made possible 
in a historical study. 

5.3.4 The example of calculus 

Another example of the use of historical studies in understanding students' 
difficulties and designing activities for them is found in a research project conducted 
by Schneider (details in §8.2.2). This is a project concerned with calculus, which 
takes into account the order and choice of historical contexts, the historical forms of 
the central concepts, and the analysis of the evolution of these concepts in terms of 
epistemological obstacles (Schneider 1988). Activities for the students are designed 
with the intention of allowing the students to put to test, individually and 
collectively, their previous beliefs and to become aware of the limitations of these. 
The problem situations generated in these activities are expected to give rise to 
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cognitive and socio-cognitive conflicts and to create favourable conditions for 
students to reach a better understanding. 

Although the project is framed by a constructivist view, it is not assumed that the 
students construct theoretical knowledge only as described by the constructivist 
model. Indeed, in this project, students’ understanding is seen as dependent, to a 
certain extent, on the didactic mediation of the teacher. For example, a game of 
‘voices and echoes’ (in Boero’s sense, see above) between Berkeley’s text and the 
students about instantaneous velocity, with a meta-level type of intervention of the 
teacher (see Dorier 1995b), makes the students better aware of their own perception 
of mathematics and of the connections of this discipline with the perceptible 
phenomena of the physical world. In this project, the theory of epistemological 
obstacles and the constructivist approach are conceived of as hypotheses whose 
efficiency should be tested case by case, taking into account the specificity of the 
mathematical contents, the socio-cultural origin of students, the problem situations 
as described by some precise didactic variables, each situation having to be studied 
didactically (for an example of a didactic study of a situation related to instantaneous 
flow see Schneider 1992). 

5.3.5

In neither of the examples of research given in this section was the methodology of 
history-based design and analysis of student activities an object of explicit 
discussion. Other research in mathematics education is concerned with this 
particular question, especially in the context of the theory of epistemological 
obstacles (e.g. Schneider 1988, 15-16; Sierpinska 1994, 120-125). Here, let us 
mention in more detail only a methodology proposed by Vasco (1995), which is not 
related to the framework of epistemological obstacles. The heuristics proposed in 
this work, called ‘forward and backward heuristics’, are aimed at helping to find 
hypotheses for potentially optimal sequencing of mathematics curricula. The 
‘forward heuristics’ are meant to propose efficient ways of reviewing the 
phylogenesis of the particular mathematical subject, in order to optimise the 
ontogenetic mastery of that conceptual field. The ‘backward heuristics’ propose 
ways to trim, compress, and even alter the sequences found through the forward 
heuristics. Forward heuristics lay out the rough draft of the roads on the 
mathematical map; backward heuristics do the redesigning, the short-cutting, and the 
road signalling (Vasco 1995,62).
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5.4 Epistemological assumptions framing interpretations of 
students understanding of mathematics 

Luis Radford, Paolo Boero and Carlos Vasco 

Two different phenomena need to be linked, in using the history of mathematics to 
understand better the student processes of learning mathematics and the way in 
which such an understanding can be used in the design of classroom activities. On 
the one hand, the learning processes of contemporary students; on the other hand, 
the historical construction of mathematical knowledge. These phenomena belong to 
two different theoretical realms: the former to the psychology of mathematics, the 
latter to an opaque field where epistemology and history (to mention only two 
disciplines) encounter each other. 

The linking of psychological and historico-epistemological phenomena requires 
a clear epistemological approach. Within the field of mathematics education, 
different approaches have been used. They differ in their epistemological 
assumptions and, as a result of this, they provide different explanations of the 
history of mathematics. They also offer different interpretations of students’ 
understanding of mathematics and suggest different methodological lines of 
pedagogical action. The aim of this section is to provide an overview of some 
approaches and their corresponding epistemological frameworks. 

5.4.1 The ‘epistemological obstacles’ perspective 

This approach is based on the idea of epistemological obstacles developed by G. 
Bachelard and later introduced into the didactics of mathematics by G. Brousseau in 
the 1970s. Brousseau’s approach is based on the assumption that knowledge exists 
and makes sense only because it represents an optimal solution in a system of 
constraints. For him, historical studies can be inspiring in finding systems of 
constraints yielding this or that particular mathematical knowledge: these systems of 
constraints are then called ‘situations fondamentales’. In Brousseau’s view, 
knowledge is not a state of mind; it is a solution to a problem, independent of the 
solving subject. Within this context, an epistemological obstacle appears as the 
source of a recurrent non-random mistake that individuals produce when they are 
trying to solve a problem. 

A clear assumption underlying this approach is that an epistemological obstacle 
is something wholly pertaining to the sphere of the knowledge-asphere that 
Brousseau conceives as separated from other spheres. Thus he distinguishes the 
epistemological obstacles from other obstacles, e.g. those related to the students’ 
own cognitive capacities according to their mental development (ontogenetic
obstacles), those which result from the teaching choices (didactic obstacles) 
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(Brousseau 1983, 177; Brousseau 1997, 85-7) and those whose origin is related to 
cultural factors (cultural obstacles) (Brousseau 1989; Brousseau 1997, 98-1 14). Of 
course, the clear-cut division of obstacles into ontogenetic, didactic, cultural and 
epistemological categories is in itself an epistemological assumption. 

The link between the psychological and the historical phenomena to which we 
referred previously is ensured by another epistemological assumption: in 
Brousseau’s account, an epistemological obstacle is precisely characterised by its 
reappearance in both the history of mathematics and in contemporary individuals 
learning mathematics. He says (translation from Brousseau 1983, 178; Brousseau 
1997, 87-8): “The obstacles that are intrinsically epistemological are those that 
cannot and should not be avoided, precisely because of their constitutive role in the 
knowledge aimed at. One can recognise them in the history of the concepts 
themselves.”

A third epistemological assumption is to be found in the articulation 
‘student/milieu’. According to Brousseau, the teacher sets the situation, but the 
knowledge which will result is due to the student’s appropriation of the problem. 
Thus, the motivation is an exclusive relationship between the problem-situation and 
the student. In doing this, Brousseau supposes that a kind of isolation between the 
teacher and the student takes place during the process of solving the given problem. 

The interpretation of the student’s understanding of mathematics is framed here 
by the idea that the development of knowledge is a sequence of conceptions and 
obstacles to overcome (Brousseau 1983, 178). Consequently, the pedagogical action 
is focused on the elaboration and organization of teaching situations built on 
carefully chosen problems that will challenge the previous students’ conceptions and 
make it possible to overcome the epistemological obstacles, opening new avenues 
for richer conceptualisations (for an example, see the way Schneider organised her 
calculus teaching, §5.3.4). 

Sierpinska has stressed that, although the new conceptualisations may be seen as 
more complex than the previous ones, these do not have to be necessarily related to 
steps in the development or progress of knowledge: “Epistemological obstacles are 
not obstacles to the ‘right’ or ‘correct’ understanding: they are obstacles to some 
change in the frame of mind.” (Sierpinska 1994, 121). 

5.4.2 A socio-cultural perspective 

Some Vygotskian perspectives in mathematics education choose, from the outset, a 
different set of epistemological assumptions. Thus, in Radford’s socio-cultural
perspective, knowledge is not restricted to the technical character which results 
when knowledge is seen as essentially related to the actions required to solve 
problems. Following a socio-historical approach (see eg Mikhailov 1980, Ilyenkov 
1977) and a cultural tradition (see eg Wartofsky 1979), knowledge is conceived as a 
culturally mediated cognitive praxis resulting from the activities in which people 
engage. Furthermore, the specific content with which knowledge is provided is seen 
as framed by the rationality of the culture under consideration. It is the mode of that 
rationality which will delimit the borders of what can be considered as a scientific 
problem and what shapes the norms of scientific inquiry-for instance, what is an 
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accepted scientific discourse and what is not, what is accepted as evidence and what 
is not. The mode of the rationality relates directly to the social, historical, material 
and symbolic characteristics underpinning the activities of the individuals (Radford, 
submitted). Hence, from a sociocultural epistemological viewpoint, knowledge can 
only be understood in reference to the rationality from which it arises and the way 
the activities of the individuals are imbricated in their social, historical, material and 
symbolic dimensions. 

In this line of thought, a problem is never an object on its own, but is always 
posed, studied and solved within the canons of rationality of the culture to which it 
belongs (Radford 1997a). For example, the supposed numerical patterned cosmo-
logical nature of the universe was an important belief in the culture of the 
Neoplatonists (as it was in the early Pythagorean schools). Another belief from that 
early Greek period was that “the paradigmatic relation between the world and 
numbers is such that what is true of numbers and their properties is also true of the 
structure and processes of the world” (O’Meara 1989, 18). The problems that they 
posed, resulting from the aforementioned assumed numerical structure of the world 
and the investigation of this structure through. non-deductive methods (Radford 
1995), were seen as being completely genuine and valid within their rationality and 
beliefs.

In Radford’s socio-cultural approach, the student/milieu relation is sustained by 
the epistemological assumption according to which knowledge is socially 
constructed. Instead of seeing such a construction as a diachronic move between the 
teacher and the student, as is often the case in socio-constructivist accounts, the 
student is seen as fully submerged in his cultural milieu, acting and thinking through 
the arsenal of concepts, meanings and tools of the culture. The way in which an 
individual appropriates the cultural knowledge of his or her culture is often referred 
to in Vygotskian perspectives as interiorisation. Different accounts of interiorisation 
can be provided. In the socio-cultural approach under consideration, a semiotic, 
sign-mediated, discursive account sees interiorisation not as a passive process but an 
active one, in which the individual (through the use of signs and discourse) re-
creates concepts and meanings and co-creates new ones (Radford 1998). An
experimental historically-based classroom study concerning the re-creation of 
concepts can be found in Radford and Guérette (1 996). A historical case study about 
the co-creation of new mathematical objects is provided by the invention of the 
second unknown in algebra by Antonio de Mazzinghi in the 14th century (see 
Radford 1997b). 

In this socio-cultural perspective, the classroom is considered as a micro-space
of the general space of culture, and the understanding that a student may have of 
mathematics is seen as a process of cultural intellectual appropriation of meanings 
and concepts along the lines of student and teacher activities. Understanding is not 
seen merely as a unidirectional stage reached by a fortunate student resulting from 
the sudden awareness of something becoming clear. As Voloshinov (1 973, 102) put 
the matter, “Any true understanding is dialogical in nature”, meaning that at the very 
core of understanding resides a hybrid semiotic matching of different views. Since 
such a semiotic matching is contextually situated and culturally sustained, there is no 
question, in this approach, of reading the history of mathematics through 
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recapitulationistic lenses (whether of contents or mechanisms). The history of 
mathematics is a rather marvellous locus in which to reconstruct and interpret the 
past, in order to open new possibilities for designing activities for our students. 
Although cultures are different they are not incommensurable; as explored in 
Voloshinov’s concept of understanding, cultures can learn from each other. Their 
sources of knowledge (e.g. activities and tools) and their meanings and concepts are 
historically and panculturally constituted. This is made clear by the fact that most of 
our current concepts are mutations, adaptations or transformations of past concepts 
elaborated by previous generations of mathematicians in their own specific contexts. 

5.4.3

Let us now turn to the epistemological assumptions underlying Boero’s ‘voices and 
echoes’ perspective (see §5.3.1). His point of departure is the fact that some verbal 
and non-verbal expressions (especially those produced by scientists of the past) 
represent in a dense way important leaps in the evolution of mathematics and 
science. Each of these expressions conveys a content, an organisation of the 
discourse and the cultural horizon of the historical leap. Referring to Bachtin (1968)
and Wertsch (1991), Boero & al (1997) called these expressions voices. Performing
suitable tasks proposed by the teacher, the student may try to make connections 
between the voice and his/her own interpretations, conceptions, experiences and 
personal senses (Leont’ev 1978), and produce an echo, a link with the voice made 
explicit through a discourse. What the authors have called the Voices and echoes 
game (VEG) is a particular educational situation aimed at activating students to 
produce echoes through specific tasks: “How might X have interpreted the fact that 
Y?”; or “Through what experiences might Z have supported his hypothesis?”; or:
“ What analogies and differences can you find between what your classmate said 
and what you read about W? ”.

The epistemological assumptions underlying the VEG, partly presented in Boero 
& al (1998), concern both the nature of ‘theoretical knowledge’ (the content to be 
mediated through the VEG), and the cognitive and educational justifications of the 
VEG. As regards the nature of theoretical knowledge, in mathematics and 
elsewhere, some characteristics were highlighted drawing on the seminal work of 
Vygotsky about scientific concepts (see Vygotsky 1990, chapter 6). In particular, 
theoretical knowledge is systematic and coherent; validation of many statements 
depends on logico-linguistic developments related to basic assumptions (axioms in 
mathematics, principles in physics, etc.). 

In relationship to the problem of transmitting mathematical theoretical 
knowledge in school, the preceding description was refined by taking into account 
Wittgenstein’s philosophy of language as well as recent developments in the field of 
mathematics education by Sfard. The following aspects of theoretical knowledge in 
mathematics were considered as crucial, concerning both the processes of theory 
production (especially as regards the role of language) and the peculiarities of the 
produced theories: 

The ‘voices and echoes’ perspective 
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– theoretical knowledge is organised according to explicit methodological
requirements (like coherence, systematicity, etc.), which offer important 
(although not exhaustive) guidelines for constructing and evaluating theories; 

– definitions and proofs are key steps in the progressive extensions of a theory. 
They are produced through thinking strategies (general, like proving by 
contradiction; or particular, like ‘epsilon-delta reasoning’ in mathematical 
analysis) which exploit the potentialities of language and belong to cultural 
tradition;

– the speech genre of the language used to build up and communicate theoretical 
knowledge has specific language keys for a theory or a set of coordinated 
theories-for instance, the theory of limits and the theory of integration, in 
mathematical analysis. The speech genre belongs to a cultural tradition; 

– as a coherent and systematic organisation of experience, theoretical knowledge 
vehiculates specific ‘manners of viewing’ the objects of a theory (in the field of 
mathematical modelling, we may consider deterministic or probabilistic 
modelling; in the field of geometry, the synthetic or analytic points of view; 
etc.).

In Boero et al. (1998), the authors claim that the approach to theoretical knowledge 
in a given mathematics domain must take these elements into account, with the aim 
of mediating them in suitable ways. Concerning the problem of ‘mediation’, the 
assumption is made that, depending on its very nature, each of the listed 
peculiarities is beyond the reach of a purely constructivistic approach. 

The authors’ working hypothesis is that the VEG can function as a learning 
environment where the elements listed above can be mediated through suitable 
tasks, needing ‘active imitation’ in the student’s ‘zone of proximal development’. 
The first teaching experiments, reported in Boero et a1 1997, Boero et al. 1998,
Garuti 1997, Lladó & Boero 1997, Tizzani & Boero 1997, were intended to provide 
experimental evidence for this hypothesis. 

The three perspectives mentioned in this section have shown a variety of ways of 
conceiving the production of knowledge. Each of them relies on different 
epistemological assumptions. It is evident from this that different epistemological 
assumptions lead to different interpretations of the history of mathematics, as well as 
different ways of linking historical conceptual developments to the conceptual 
developments of contemporary students. 

References for §5.4 

Bachtin, M. 1968. Dostoevskij, poetica e stilistica, Torino: Einaudi 
Boero P., Pedemonte B. and Robotti E. 1997. ‘Approaching theoretical knowledge through 

voices and echoes: a Vygotskian perspective’, Proceedings of the 21st International 
Conference on the Psychology of Mathematics Education, Lahti, Finland, vol. 2, 8 1-88

Boero P., Pedemonte B., Robotti E. and Chiappini G. 1998. ‘The ‘voices and echoes game’ 
and the interiorization of crucial aspects of theoretical knowledge in a Vygotskian 
perspective: ongoing research’, Proceedings of the 22nd International Conference on the 
Psychology of Mathematics Education, Stellenbosch (South Africa), 2, 120- 127



5.4 Epistemological assumptions about student undersranding 167

Brousseau, G. 1983. ‘Les obstacles épistémologiques et les problèmes en mathématiques’, 

Brousseau, G. 1989. ’Les obstacles épistémologiques et la didactique des mathématiques’, in 
Recherches en Didactique des Mathématiques, 4 (2), 165-198

N. Bednarz et C. Garnier (eds), Construction des savoirs, obstacles et conflits, Montreal:
Agence d’ Arc, 4 1-64

Brousseau, G 1997. Theory of didactical situations in mathematics, ed & tr N Balacheff et al, 
Dordrecht: Kluwer 

Garuti, R. 1997. ‘A classroom discussion and a historical dialogue: a case study’, Proceedings
of the 21st International Conference on the Psychology of Mathematics Education, Lahti,
Finland, 2, 297-304.

Ilyenkov, E. V. 1977. Dialectical logic, Moscow: Progress Publishers 
Lladò, C. & Boero, P. 1997. ‘Les interactions sociales dans la classe et le role mediateur de 

Leont’ev, A. N. 1978. Activity, consciousness and personality, Englewod Cliffs: Prentice-Hall
Mikhailov, F. T. 1980. The riddle of the self; Moscow: Progress Publishers 
O’Meara, D. J. 1989. Pythagoras revived, Oxford: Clarendon Press. 
Radford, L. 1995. ‘La transformación de una teoría matemática: el caso de los números 

poligonales’, Mathesis 11 (3), 2 17-250.
Radford, L. and Guérette, G. 1996 ‘Quadratic equations: re-inventing the formula: a teaching 

sequence based on the historical development of algebra’, in Proc. HEM Braga ii, 301 -
308.

Radford, L. 1997a. ‘On psychology, historical epistemology and the teaching of mathematics: 
towards a socio-cultural history of mathematics’, For the learning of mathematics 17 (1),

I’enseignant’, Actes de la CIEAEM-49, Setubal, 171-179

26-33.
Radford, L. 1997b. ‘L’invention d’une idee mathématique : la deuxième inconnue en 

algèbre’, Repères (Revue des instituts de Recherche sur I’enseignement des 
Mathématiques), juillet, 28, 81-96.

Radford, L. 1998. ‘On signs and representations: a cultural account’, Scientia paedagogica 
experimentalis, 35, 277-302

Radford, L. (submitted). ‘On mind and culture: A post-Vygotskian semiotic perspective, with 
an example from Greek mathematical thought.’ 

Sfard, A. 1997. ’Framing in mathematical discourse’, Proceedings of the 21st International 
Conference on the Psychology of Mathematics Education, Lahti, Finland, 4, 144-15 1 

Sierpinska, A. 1994. Understanding in mathematics, London: Falmer Press 
Tizzani, P. & Boero, P. 1997. ‘La chute des corps de Aristote à Galilee: voix de I’histoire et 

Voloshinov, V. N. 1973. Marxism and the philosophy of language, Cambridge, Mass: 

Vygotsky, L. S. 1990. Pensiero e linguaggio, edizione critica a cura di L. Mecacci, Bari 
Wartofsky, M ,1979. Models, representations and the scientific understanding, Dordrecht:

Wertsch, J. V. 1991. Voices of the mind, Wheatsheaf, Harvester 
Wittgenstein, L. 1969. On certainty, Oxford: Basil Blackwell 

echos dans la classe’, Actes de la CIEAEM-49, Setubal, 369-376

Harvard University Press 

Reidel



168 5 Historical formation and student understanding of mathematics 

5.5 Conclusions: guidelines and suggestions for future 
research

Jean-Luc Dorier and Leo Rogers 

The various issues addressed in this chapter, and the related teaching experiments 
and didactical analyses briefly described, show clearly that while ‘naive 
recapitulationism’ has persisted in many forms, the relation between ontogenesis and 
phylogenesis is now recognised to be much more complex than was originally 
believed. The relations between history of mathematics and learning and teaching of 
mathematics can be extremely varied. Some teaching experiments may use 
historical texts as essential material for the class, while on the other hand some 
didactical analyses may integrate historical data in the teaching strategy, and 
epistemological reflections about it, in such a way that history is not visible in the 
actual teaching or learning experience. 

While some knowledge of history of mathematics may help in understanding or 
perhaps even anticipating some of our students’ misunderstandings, a careful 
didactical analysis using history of mathematics is necessary in order to try to 
overcome students’ difficulties. History may be a guide for designing teaching 
experiments but it is only one of many approaches, more or less essential, more or 
less visible, of the whole didactical setting. Therefore, one of the necessary 
conclusions of this chapter would be that any use of history in the teaching of 
mathematics needs an accompanying didactical reflection. 

This way of putting things creates an asymmetry between history and didactics 
which may not reflect their actual relationship. Indeed any attempt to put in relation 
the history of mathematics and the teaching or learning of mathematics necessarily 
induces an epistemological questioning both of individual cognitive development 
and of the interpretations of the historical development of mathematics. What 
happened in the past and what may be likely to happen in the classroom are 
obviously different phenomena because they are based in very different cultural, 
sociological, psychological and didactical environments and because contemporary 
didactical contexts and historical periods conform to very different constraints. 

Beyond these differences, the act of teaching is legitimated by the belief that 
what is taught in the classroom bears some similarity with professional mathematics. 
However, the knowledge to be taught (savoir enseigné) is a transformation of the 
knowledge of ‘professional’ mathematicians (savoir savant) even if it uses the same 
vocabulary, notions, and so on, and it is rare that historical processes are taken into 
account explicitly while writing curricula. Historians of mathematics may object 
that this is a nonsense. On the other hand, it would also be a nonsense to try to 
impose a reconstruction of history in the teaching process, in a very strict 
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recapitulationist paradigm. As Chevallard says (translated from Chevallard 1991, 
48):

Another direction for research consists in being aware that the planned didactical construction 
of knowledge is a specific project within the teaching process, bearing an a priori 
heterogeneity with the scientific practices of knowledge, and not immediately reducible to the 
corresponding socio-historical geneses of knowledge. 

Nevertheless, teaching is still organised in such a way that there is a social demand 
that the knowledge to be taught must appear as close as possible to the official 
knowledge of mathematicians. In this sense, an epistemological reflection on the 
development of ideas in the history of mathematics can enrich didactical analysis by 
providing essential clues which may specify the nature of the knowledge to be 
taught, and explore different ways of access to that knowledge. Nevertheless what 
appears to have happened in history does not cover all the possibilities. 

Figure 5.5: Nicolaus Copernicus, in front of the Polish Academy of Sciences in Warsaw,
seen through the interpretative lens first of Polish history, then of the Danish sculptor
Bertel Thorwaldsen, then ofa British photographer in the 1990s. Now an inspiration to
Polish students, in the 19th and 20th centuries many who had only vague understanding
of his achievements were nevertheless agitated about whether Copernicus was Polish or
German. The sphere and the compasses have long been symbols to represent a
mathematician to the gaze of passers by.

We cannot reconstruct the past with any certainty. Not only are we missing 
essential data (for example, lost texts, ephemera, unpublished material or oral 
exchanges) but also a historical fact or event is never pristine. A fact or event is 
always seen through interpretative lenses and hence will only be partial and 
subjective. We face essentially similar difficulties when analysing didactical events. 
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To this extent history and mathematical pedagogy share common theoretical issues 
with regard to the necessity for epistemological reflection. We need not only to look 
through history in order to try to improve the teaching of mathematics but also to 
elaborate common (‘echoing’) ways of exploring historical and didactical situations. 
This could be a very challenging issue for future research which could be 
approached from different viewpoints. It could be a new way of raising the issue of 
cultural influences in the development of mathematics. 

We have said above that what happened in history does not cover all the possible 
ways of access to one specific element of knowledge. Yet, when setting up a 
teaching programme, one should try to analyse as many ways of access to the 
knowledge as possible. This is an important part of any didactical analysis where 
the use of history can be informative. However, this work is usually confined within 
the limits of an official curriculum. Indeed, traditions in curricula are sometimes so 
strong that our views, even as researchers in mathematics education, on the 
organisation of knowledge are limited because of the strong cultural influences that 
unconsciously guide our thoughts about the different possible organisations of a 
curriculum. Because history is temporally and culturally distant from the 
mathematics taught in our usual curricula, it may provide us with some unusual 
ways of access to knowledge that could be of considerable didactical value. Of 
course, this can be possible only if one does not look at history through the lens of 
‘modern mathematics’. In this sense, another line of development for future 
research would be a reflection on certain parts of the curriculum in relation to an 
epistemological reflection on its historical developments. 

It may be added that, among the areas for further research, it seems important 
that mathematics educators and. teachers should become more closely involved in 
co-operative efforts to develop and implement lessons and modules using the 
history of mathematics as we have shown here. In a similar manner, collaborative 
work between historians of mathematics and mathematics educators can contribute 
to better elucidation of the problem of the link between the epistemological and 
psychological aspects of the conceptual development of mathematical thinking. 
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